
REPORT DOCUMENTATION PAGE Form Approved

OBMNo. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response. Including the time lor reviewing instructions, searching existing data sources, gathering am
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect orf this collection of information,

including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204. Arlington,
VA 222024302, and to the Office of Management and Budget Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
memorandum

4. TITLE AND SUBTITLE

The M-Machine Multicomputer

6. AUTHOR(S)

Marco Fillo, Stephen W. Keckler, William J. Dally, Nicholas P. Carter,
Andrew Chang, Yevgeny Gurevich, Whay S. Lee

5. FUNDING NUMBERS

F19628-92-C-0045,
F49620-94-1-0462

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Massachusetts Institute of Technology
Artificial Intelligence Laboratory
545 Technology Square
Cambridge, Massachusetts 02139

8. PERFORMING ORGANIZATION
REPORT NUMBER

AIM 1532

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research
Information Systems
Arlington, Virginia 22217

11. SUPPLEMENTARY NOTES

None

i i in ipnriifiQniNnrMnNiTnniNtT-
AQSCh*!PEiaOB!1*WUMBER

ELECTE
SEP 0 5 1995

F
12a. DISTRIBUTION/AVAILABILITY STATEMENT

DISTRIBUTION UNLIMITED r marauFtrnoN STATEMENT A

Approved tai
Distxüiutiosa

02h_üiaiaiBUIIQRCODE

jjucüc leleos«!
Unlimited *

13. ABSTRACT (Maximum 200 words)

The M-Machine is an experimental multicomputer being developed to test architectural concepts
motivated by the constraints of modern semiconductor technology and the demands of programming
systems. The M-Machine computing nodes are connected with a 3-D mesh network; each node is a
multithreaded processor incorporating 12 function units, on-chip cache, and local memory. The
multiple function units are used to exploit both instruction-level and thread-level parallelism. A user
accessible message passing system yields fast communication and synchronization between nodes.
Rapid access to remote memory is provided transparently to the user with a combination of hardware
and software mechanisms. This paper presents the architecture of the M-Machine and describes how
its mechanisms maximize both single thread performance and overall system throughput.

14. SUBJECT TERMS
AI, MIT, Artificial Intelligence,
parallel computer architecture,
instruction level parallelism, multithreading,

15. NUMBER OF PAGES
13

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OFABSTRACT

20. LIMITATION OF
ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
Standard Form 298 (Hev. 2-B9)
Prescribed by ANSI Std. 239-18
298-102

NSN 754ö-oi-28ö-55oö

1 DTK QUALITY INSPECTED 9

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 1532 March, 1995

The M-Machine Multicomputer

Marco Fillo, Stephen W. Keckler, William J. Dally,
Nicholas P. Carter, Andrew Chang, Yevgeny Gurevich, Whay S. Lee

This publication can be retrieved by anonymous ftp to publications.ai.mit.edu.

Abstract

The M-Machine is an experimental multicomputer being developed to test architectural concepts moti-
vated by the constraints of modern semiconductor technology and the demands of programming systems.
The M-Machine computing nodes are connected with a 3-D mesh network; each node is a multithreaded
processor incorporating 12 function units, on-chip cache, and local memory. The multiple function units
are used to exploit both instruction-level and thread-level parallelism. A user accessible message passing
system yields fast communication and synchronization between nodes. Rapid access to remote memory
is provided transparently to the user with a combination of hardware and software mechanisms. This
paper presents the architecture of the M-Machine and describes how its mechanisms maximize both
single thread performance and overall system throughput.

Copyright © Massachusetts Institute of Technology, 1995

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology. D
The research described in this paper was supported by the Advanced Research Projects Agency and monitored by the Air Q
Force Electronic Systems Divbion under contract F19628-92-C-0045 and in part by the Air Force Office of Scientific Research
under contract F49620-94-1-0462. ~

ay
Distribution/

Availability Codes

Avail and/or
Special

1 Introduction
Because of the increasing density of VLSI integrated cir-
cuits, most of the chip area of modern computers is now
occupied by memory and not by processing resources.
The M-Machine is an experimental multicomputer be-
ing developed to test architecture concepts which are
motivated by these constraints of modern semiconduc-
tor technology and the demands of programming sys-
tems, such as faster execution of fixed sized problems
and easier programmability of parallel computers.

Advances in VLSI technology have resulted in com-
puters with chip area dominated by memory and not
by processing resources. The normalized area (in A)
of a VLSI chip1 is increasing by 50% per year, while
gate speed and communication bandwidth are increas-
ing by 20% per year [10]. As a result, a 64-bit processor
with a pipelined FPU (400MA2) is only 11% of a 3.6GA2

1993 0.5/mi chip and only 4% of a 10GA2 1996 0.35pm
chip. In a system with 64 MBytes (256 MBytes in 1996)
of DRAM, the processor accounts for 0.52% (0.13% in
1996) of the silicon area in the system. The memory
system, cache, TLB, controllers, and DRAM account
for most of the remaining area. Technology scaling has
made the memory, rather than the processor, the most
area-consuming resource in a computer system.

To address this imbalance, the M-Machine increases
the fraction of chip area devoted to processor, to
make better use of the critical memory resources. An
M-Machine multi-ALU processor (MAP) chip contains
four 64-bit three-issue clusters that comprise 32% of the
5GA2 chip and 11% of an 8 MByte (six-chip) node. The
multiple execution clusters provide better performance
than using a single cluster and a large on-chip cache in
the same chip area. The high ratio of arithmetic band-
width to memory bandwidth (12 operations/word) al-
lows the MAP to saturate the costly DRAM bandwidth
even on code with high cache-hit ratios. A 32-node
M-Machine system with 256 MBytes of memory has
128 times the peak performance of a 1996 uniprocessor
with the same memory capacity at 1.5 times the area, a
85:1 improvement in peak performance/area. Even at a
small fraction of this peak performance, such a machine
allows the costly, fixed-sized memory to handle more
problems per unit time resulting in more cost-effective
computing.

The M-Machine is designed to extract more paral-
lelism from problems of a fixed size, rather than requir-
ing enormous problems to achieve peak performance. To
do this, nodes are designed to manage parallelism from
the instruction level to the process level. The 12 func-
tion units in a single M-Machine node are controlled
using a form of Processor Coupling [13] to exploit in-

1The parameter A is a normalized, process independent
unit of distance equivalent to one half of the gate length [18].
For a 0.5nm process, A is 0.25/im.

struction level parallelism by executing 12 operations
from the same thread, or to exploit thread-level paral-
lelism by executing operations from up to six different
threads. The fast internode communication allows col-
laborating threads to reside on different nodes.

The M-Machine also addresses the demand for eas-
ier programmability by providing a incremental path for
increasing parallelism and performance. An unmodi-
fied sequential program can run on a single M-Machine
node, accessing both local and remote memory. This
code can be incrementally parallelized by identifying
tasks, such as loop iterations, that can be distributed
both across nodes and within each node to run in par-
allel. A flat, shared address space simplifies naming
and communication. The local caching of remote data
in local DRAM automatically migrates a task's data to
exploit locality.

The remainder of this paper describes the M-
Machine in more detail. Section 2 gives an overview
of the machine architecture. Mechanisms for intra-
node parallelism are described in Section 3. Section 4
discusses inter-node communication including the user-
level communication primitives and how they are used
to provide global coherent memory access.

2 M-Machine Architecture
The M-Machine consists of a collection of computing
nodes interconnected by a bidirectional 3-D mesh net-
work, as shown in Figure 1. Each six-chip node consists
of a multi-ALU (MAP) chip and 1 MW (8 MBytes) of
synchronous DRAM (SDRAM). The MAP chip includes
the network interface and router, and it provides an
equal bandwidth of 800 MBytes/s to the local SDRAM
and to each network channel. I/O devices may be con-
nected either to an I/O bus available on each node, or
to I/O nodes (IONs) attached to the face channels.

As shown in Figure 2, a MAP contains: four execu-
tion clusters, a memory subsystem comprised of four
cache banks and an external memory interface, and a
communication subsystem consisting of the network in-
terfaces and the router. Two crossbar switches inter-
connect these components. Clusters make memory re-
quests to the appropriate bank of the interleaved cache
over the 150-bit wide (address+data) 4x4 M-Switch.
The 90-bit wide 10x4 C-Switch is used for inter-cluster
communication and to return data from the memory
system. Both switches support up to four transfers per
cycle.

MAP Execution Clusters: Each of the four MAP
clusters is a 64-bit, three-issue, pipelined processor con-
sisting of two integer ALUs, a floating-point ALU, as-
sociated register files, and a 1KW (8KB) instruction
cache, as shown in Figure 3. One of the integer ALUs
in each cluster, termed the memory unit, serves as in-
terface to the memory system. Each MAP instruction

Z-dir

Figure 1: The M-Machine architecture.

S
Cache
BankO

Cluster 0

MAP chip

External
Memory

JZL
Cache
Bankl

Mfwcy laterfw» B«

Memory
Interface

|LTLB!

C-Switch

3ZE
Cache
Bank 2

-Switc]

Cluster 1

GTLB

:hi

J_L
Cache
Banks

Cluster 2

LTS

~M I » VO B

Clusters

Network
Output

z
Network

Input

I ,1 Bmitef I

F Network

Figure 2: The MAP architecture.

Figure 3: A MAP cluster consists of 3 execution units, 2 register files, an instruction cache and ports onto the
memory and cluster switches.

contains 1, 2, or 3 operations, one for each ALU. All
operations in a single instruction issue together but may
complete out of order.

Memory System: As illustrated in Figure 2, the on-
chip cache is organized as four word-interleaved 4KW
(32KB) banks to permit four consecutive word accesses
to proceed in parallel. The cache is virtually addressed
and tagged. The cache banks are pipelined with a three-
cycle read latency, including switch traversal.

The external memory interface consists of the
SDRAM controller and a local translation lookaside
buffer (LTLB) used to cache local page table (LPT) en-
tries. Pages are 512 words (64 8-word cache blocks).
The SDRAM controller exploits the pipeline and page
mode of the external memory and performs SECDED
error control.

A synchronization bit is associated with each word of
memory. Special load and store operations may specify
a precondition and a postcondition on the synchroniza-
tion bit. These are the only atomic read-modify-write
memory operations.

The M-Machine supports a single global virtual ad-
dress space. A light-weight capability system imple-

2 Single error correcting, double error detecting

ments protection through guarded pointers [3], while
paging is used to manage the relocation of data in phys-
ical memory within the virtual address space. The seg-
mentation and paging mechanisms are independent so
that protection may be ^reserved on variable-size seg-
ments of memory. The memory subsystem is integrated
with the communication system and can be used to
access memory on remote nodes, as described in Sec-
tion 4.2.

Communication Subsystem: Messages are com-
posed in the general registers of a cluster and launched
atomically using a user-level SEND instruction. Protec-
tion is provided by sending a message to a virtual mem-
ory address that is automatically translated to the des-
tination node identifier by a global translation lookaside
buffer (GTLB), which caches entries of a global desti-
nation table (GDT). Arriving messages are queued in a
register-mapped hardware FIFO readable by a system-
level message handler. Two network priorities are pro-
vided, one for requests and one for replies.

3 Intra-node Concurrency Mechanisms
The amount and granularity of parallelism varies enor-
mously across application programs and even during dif-

ferent phases of the same program. Some phases have an
abundance of instruction level parallelism that can be
extracted at compile time. Others have data dependent
parallelism that can be executed using multiple threads
with widely varying task sizes.

The M-Machine is designed to efficiently execute pro-
grams with any or all granularities of parallelism. On
the MAP, parallel instruction sequences (H-Threads) are
run concurrently on the four clusters to exploit ILP
across all 12 of the function units. Alternatively they
may be used to exploit loop level parallelism. To exploit
thread-level parallelism and to mask variable pipeline,
memory, and communication delays, the MAP inter-
leaves the 12-wide instruction streams from different
tasks, V-Threads, within each cluster on a cluster-by-
cluster and cycle-by-cycle basis, thus sharing the execu-
tion resources among all active tasks.

This arrangement of V-Threads (Vertical Threads)
and H-Threads (Horizontal Threads) is summarized in
Figure 4. Six V-Threads are resident in the cluster reg-
ister files. Each V-Thread consists of four H-Threads,
one on each cluster. Each H-Thread consists of a se-
quence of 3-wide instructions containing integer, mem-
ory, and floating point operations. On each cluster the
H-Threads from the different V-Threads are interleaved
over the execution units.

3.1 H-Threads

An H-Thread runs on a single cluster and executes a
sequence of operation triplets (one operation for each
of the 3 ALUs in the cluster) that are issued simultane-
ously. Within an H-Thread, instructions are guaranteed
to issue in order, but may complete out of order. An
H-Thread may communicate and synchronize via regis-
ters with the 3 other H-Threads in the same V-Thread,
each executing on a separate cluster. Each H-Thread
reads operands from its own register file, but can di-
rectly write to the register file of any H-Thread in its
own V-Thread.

H-Threads support multiple execution models. They
can execute as independent threads with possibly dif-
ferent control flows to exploit loop-level or thread-level
parallelism. Alternatively, the compiler can schedule
the four H-Threads in a V-Thread as a unit to exploit
instruction level parallelism, as in a VLIW machine.
In this case the compiler must insert explicit register-
based synchronization to enforce instruction ordering
between H-Threads. Unlike the lock-step execution of
traditional VLIW machines, H-Thread synchronization
occurs infrequently, only being required by data or re-
source dependencies, While explicit synchronization in-
curs some overhead, it allows H-Threads to slip relative
to each other in order to accommodate variable-latency
operations such as memory accesses.

Figure 5 shows an illustrative example of the in-
struction sequences of a program fragment on 1 and

2 H-Threads. The program is the body of the inner
loop of a "smoothing" operation using a 7-point stencil
on 3-D grid. On a particular grid point, the smoothed
value is given by u* = u. + axr* + b x (ru + rj + rn

+ rs + re + rw), where r, is the residual value at that
point, and ru, rj, rn, rs, rs and rw are the residuals
at the neighboring grid points in the six directions UP,
DOWN, NORTH, SOUTH, EAST and WEST respectively.
In order to better illustrate the use of H-Threads, ad-
vanced optimization (such as software pipelining) is not
performed.

Figure 5(a) shows the single H-Thread program, with
a 12 long instruction stream which includes all of the
memory and floating point operations. The weighting
constants a and b are kept in registers. Figure 5(b)
shows the instruction streams for two H-Threads work-
ing cooperatively. Each H-Thread performs four mem-
ory operations and some of the arithmetic calculations.
Instruction 7 in H-Thread 0 calculates a partial sum
and transmits it directly to register t2 in H-Thread 1.
The empty instruction on H-Thread 1 is used to prepare
t2 for H-Thread synchronization; H-Thread 1 will not
issue instruction 7 until the data arrives from H-Thread
0 as explained below.

The use of multiple H-Threads reduces the static
depth of the instruction sequences from 12 to 8. On
a larger 27-point stencil, the depth is reduced from 36
to 17 when run on 4 H-Threads. The actual execu-
tion time of the program fragments will depend on the
pipeline and memory latencies.

H-Thread Synchronization
As shown in the example of Figure 5, H-Threads syn-

chronize through registers. A scoreboard bit associated
with the destination register is cleared (empty) when
a multicycle operation, such as a load, issues and set
(full) when the result is available. An operation that
uses the result will not be selected for issue until the
corresponding scoreboard bit is set.

Inter-cluster data transfers require explicit register
synchronization. To prepare for inter-cluster data trans-
fers, the receiving H-Thread executes an EMPTY op-
eration to mark empty a set of destination registers.
As each datum arrives from the transmitting H-Thread
over the C-Switch, the corresponding destination regis-
ter is set full. An instruction in the receiving H-Thread
that uses the arriving data will be not eligible for issue
until its data is available.

Four pairs of single-bit global condition code (CC)
registers are used to broadcast binary values across the
clusters. Unlike centrally located global registers, the
MAP global CC registers are physically replicated on
each of the clusters. A cluster may broadcast using
either register in only one of the four pairs, but may
read and empty its local copy of any global CC register.
Using these registers, all four H-Threads can execute

SPACE SHARE

Int-op i FP-op i M-op

3-wide Instruction

Figure 4: Multiple V-Threads are interleaved dynamically over the cluster resources. Each V-Thread consists of 4
H-Threads which execute on different clusters.

conditional branches and assignment operations based
on a comparison performed in a single cluster.

The scoreboard bits associated with the global CC
registers may be used to rapidly synchronize the
H-Threads within a V-Thread. Figure 6 shows an ex-
ample of two H-Threads synchronizing at loop bound-
aries. Two registers are involved in the synchronization,
in order to provide an interlocking mechanism ensuring
that neither H-Thread rolls over into the next loop it-
eration.

H-Thread 0 computes bar, compares it (using eq)
to end, and broadcasts the result by targetting gccl.
H-Thread 1 uses gccl to determine whether to branch,
marks gccl empty again, and writes to gcc3 to notify
H-Thread 0 that the current value of gccl has been
consumed. H-Thread 0 blocks until gcc3 is full, and
then empties it for the next iteration. Neither thread
can proceed with the next iteration until both have com-
pleted the current one. Due to the multicopy structure
of MAP global CC registers, this protocol can easily be
extended to perform a fast barrier among 4 H-Threads
executing on different clusters, without combining or
distribution trees.

3.2 V-Threads

A V-Thread (vertical thread) consists of 4 H-Threads,
each running concurrently on a different cluster. As
discussed above, H-Threads within the same V-Thread
may communicate via registers. However, H-Threads
in different V-Threads may only communicate and syn-
chronize through messages or memory. The MAP has
enough resources to hold the state of six V-Threads,
each one occupying a thread slot. Four of these slots are
user slots, one is the event slot, and one is the excep-
tion slot. User threads run in the user slots, handlers
for asynchronous events and messages run in the event
slot, and handlers for synchronous exceptions detected
within a cluster, such as protection violations, run in
the exception slot.

On each cluster, six H-Threads (one from each
V-Thread) are interleaved dynamically over the cluster
resources on a cycle-by-cycle basis. A synchronization
pipeline stage holds the next instruction to be issued
from each of the six V-Threads until all of its operands
are present and all of the required resources are avail-
able [13]. At every cycle this stage decides which in-
struction to issue from those which are ready to run.
An H-Thread that is stalled waiting for data or resource
availability consumes no resources other than the thread
slot that holds its state. As long as its data and resource

(a)Single H-Thread

MEM Unit FP Unit
1. load ru

2. load r^
3. load rn t2 = ru + rd

4. load rs t2 = t2 + rn

5. load re t2 = t2 + rs

6. load rw t2 = h + re
7. load r« t2 = t2 + rw

8. load u» t2 = b x t2

9. ti = a x r*
10. ti = ti + t2

11. u* = u* + ti
12. store u.

(b) Two concurrent H-Threads

H-Thread 0
M£Jtf Unit FP Unit

1. load ru
2. load r^
3. load r* t2 = ru + rd

4. load u* t2 = b x t2

5. ti = a x r*
6. tx = u* + ti
7. Hl.t2 = ti + t2

H-Thread 1
MEM Unit FP Unit

1. load rn

2. load rs empty t2

3. load re ti = rn + rs

4. load rw ti = tx + re

5. ti = ti + rw

6. ti = b x ti
7. u« = ti + t2

8. store u«

Figure 5: Example of H-Threads used to exploit instruction level parallelism: (a) single H-Thread, (b) two
H-Threads. The computation is a smoothing operator using a 7-point stencil on a 3-D grid: u, = u* + axr»
+ b x (ru + rd + rn + rs + re + rw).

H-Thread 0
1 LOOP_0: compute bar

H-Thread 1
LOOP_I : compute

eq bar end gccl•

branch delay
slats

br gccl LOOP_0

use gcc3

empty gcc3

br gccl LOOP_l

empty gcclx

write gcc3 .'
branch delay
slots

Figure 6: Loop synchronization between two H-Threads using MAP global CC registers.

dependencies are satisfied, a single thread may issue an
instruction every cycle. Multiple V-Threads may be in-
terleaved with zero delay, which allows task switching
to be used to mask even very short pipeline latencies
as well as longer communication and synchronization
latencies.

3.3 Asynchronous Exception Handling

Exceptions that occur outside the MAP cluster are han-
dled asynchronously by generating an event record and
placing it in a hardware event queue. LTLB misses,
block status faults, and memory synchronizing faults,
for example, are handled asynchronously. These excep-
tions are precise in the sense that the faulting operation
and its operands are specifically identified in the event
record, but they are handled asynchronously, without
stopping the thread.

A dedicated handler in an H-Thread of the event
V-Thread processes event records to complete the fault-
ing operations. The event handler loops, reading event
records from the register-mapped queue and processing
them in turn. A read from the queue will not issue if
the queue is empty. For example, on a local TLB miss,
the hardware formats and enqueues an event record con-
taining the faulting address as well as the write data or
read destination. A TLB miss handler reads the record,
places the requested page table entry in the TLB, and
restarts the memory reference. The thread that issued
the reference does not block until it needs the data from
the reference that caused the miss. Inter-node message
arrival is treated as an event in which the contents of the
message are written into the appropriate event queue
(which serves as the message queue).

Each H-Thread in the event V-Thread handles one
class of events. Memory synchronization and status
faults are run on cluster 0, local TLB misses are run
on cluster 1, and arriving messages are run on clusters
2 and 3, depending on the priority of the message.

Handling exceptions asynchronously obviates the
need to cancel all of the issued operations following the
faulting operation, a significant penalty in a 12-wide
machine with deep pipelines. Dedicating H-Threads
to this purpose accelerates event handling by elimi-
nating the need to save and restore state, and allows
concurrent (interleaved) execution of user threads and
event handlers. Asynchronous event handling does re-
quire sufficient queue space to handle the case where
every outstanding instruction generates an exception.
To reduce queue size requirements, exceptions that are
detected in the first execution cycle, such as protec-
tion violations and some arithmetic exceptions, stall all
user H-Threads in the affected cluster, and are handled
synchronously by the local H-Thread of the exception
V-Thread.

3.4 Discussion

There are two major methods of exploiting instruction
level parallelism. Superscalar processors execute mul-
tiple instructions simultaneously by relying upon run-
time scheduling mechanisms to determine data depen-
dencies [23, 12]. However, they do not scale well with
increasing number of function units because a greater
number of register file ports and connections to the
function units are required. In addition, superscalars
attempt to schedule instructions at runtime (much of
which could be done at compile time), but they can only
examine a small subsequence of the instruction stream.

Very Long Instruction Word (VLIW) processors such
as the Multiflow Trace series [4] use only compile time
scheduling to manage instruction-level parallelism, re-
source usage, and communication among a partitioned
register file. However, the strict lock-step execution is
unable to tolerate the dynamic latencies found in mul-
tiprocessors.

Processor Coupling was originally introduced in [13]
and used implicit synchronization between the clusters
on every wide instruction. Relaxing the synchroniza-
tion, as described in this section, has several advantages.
First, it is easier to implement because control is local-
ized completely within the clusters. Second, it allows
more slip to occur between the instruction streams run-
ning on different clusters (H-Threads), which eliminates
the automatic blocking of one thread on long latency
operations of another, providing more opportunity for
latency tolerance. Finally, the H-Threads can be used
flexibly to exploit both instruction and loop level paral-
lelism. When H-Threads must synchronize, they do so
explicitly though registers, at a higher cost than implicit
synchronization. However, fewer synchronization oper-
ations are required, and many of them can be included
in data transfer between clusters.

Using multiple threads to hide memory latencies and
pipeline delays has been explored in several different
studies and machines. Gupta and Weber explore the
use of multiple hardware contexts in multiprocessors [8],
but the context switch overhead prevents the masking
of pipeline latencies. MAS A [9] as well as HEP [22]
use fine grain multithreading to issue an instruction
from a different context on every cycle in order to mask
pipeline latencies. However, with the required round-
robin scheduling, single thread performance is degraded
by the number of pipeline stages. The zero cost switch-
ing among V-Threads and the pipeline design of the
MAP provide fast single thread execution as well as la-
tency tolerance for better local memory bandwidth uti-
lization.

4 Inter-node Concurrency Mechanisms

The M-Machine provides a fast, protected, user-level
message passing substrate. A user program may com-

municate and synchronize by directly sending messages
or by reading and writing remote memory using a co-
herent shared memory system layered on the message-
passing substrate. Direct messaging provides maximum
performance data transfer and synchronization while
shared memory access simplifies programming. Remote
memory access is implemented using fast trap handlers
that intercept load and store operations that reference
remote data. These handlers send messages to other
nodes to complete remote memory references transpar-
ently to user programs. Additional hardware and soft-
ware mechanisms allow remote data to be cached locally
in both the cache and external memory.

4.1 Message Passing Support

The M-Machine provides hardware support for inject-
ing a message into the network, determining the mes-
sage destination, and dispatching a handler on message
arrival. For example, Figure 7 shows the M-Machine
instruction sequences for both the sending and receiv-
ing components of a remote memory store. The mes-
sage sending sequence (Figure 1(a)) loads the data to be
stored into general register MCI. The SEND instruction
takes three arguments, the target address (Raddr), the
dispatch instruction pointer (Rdip), and the message
body length (#1). When the SEND issues, the Global
Translation Lookaside Buffer (GTLB) translates virtual
address Raddr into a physical node identifier and sends
that node a 3 word message containing Rdip, Raddr, and
MCI. When the message arrives at the destination (Fig-
ure 7(b)) hardware enqueues it in the priority 0 message
queue. An H-Thread dedicated to message handling
jumps to the handler via Rdip, executes a store opera-
tion and branches back to the dispatch portion of the
code.

Message Injection: A message is composed in a clus-
ter's general registers and transmitted atomically with
a single SEND instruction that takes as arguments a des-
tination virtual address, a dispatch instruction pointer
(DIP), and the message body length. Hardware com-
poses the message by prepending the destination and
DIP to the message body and injects in into the net-
work. Two message priorities are provided: user mes-
sages are sent at priority zero, while priority 1 is used
for system level message reply, thus avoiding deadlock.

Message Address Translation: As de-
scribed in [19], the explicit management of processor
identifiers by application programs is cumbersome and
slow. To eliminate this overhead, the MAP implements
a Global Translation Lookaside Buffer (GTLB), backed
by a software Global Destination Table (GDT), to hold
mappings of virtual address regions to node numbers.
These mappings may be changed by system software.
The user specifies the destination of a message with
a virtual address, which the network output interface

hardware uses to access the GTLB and calculate the
physical destination node.

With a single GTLB entry, a range of virtual ad-
dresses (called a page-group) is mapped across a region
of processors. In order to simplify encoding, the page-
group must be a power of 2 pages in size, where each
page is 1024 words. The mapped processors must be
in a contiguous 3-D rectangular region with a power
of 2 number of nodes on a side. This information is en-
coded in a single GTLB entry as shown in Figure 8. The
virtual page field is used as the tag during the fully as-
sociative GTLB lookup. The starting node specifies the
coordinates of the origin of the region of mapped pro-
cessors, while the extent specifies the base 2 logarithm
of the X, Y, and Z dimensions of the region. The page-
group length field specifies the number of local pages
that are mapped into the page group. The pages-per-
node field indicates the number of pages placed on each
consecutive processor, and is used to implement a spec-
trum of block and cyclic inter leavings.

Message Reception: At the destination node, an ar-
riving message is automatically placed in a hardware
message queue. The head of the message queue is
mapped to a register accessible by an H-Thread (in
either cluster 2 or 3, depending on message priority)
in the event V-Thread. The message dispatch handler
code running in that H-Thread stalls until the mes-
sage arrives, and then dequeues the dispatch instruc-
tion pointer (DIP) and jumps to it. This starts execu-
tion of the specific handler code to perform the action
requested in the message. Some of the actions include
remote read, remote write, and remote procedure call.
The message need not be copied to or from memory, as
it is accessible via a general register. In order to avoid
overflow of the fixed size message queue and back up
of the network, only short, well-bounded tasks are exe-
cuted by message handlers. Longer tasks are enqueued
to be run as a user process on a user V-Thread.

Protection: The M-Machine communication sub-
strate provides fully protected user-level access to the
network. The SEND instruction atomically launches a
message into the network, preventing a user from oc-
cupying the network output indefinitely. The auto-
matic translation provided by the GLTB ensures that
a program may only send messages to virtual addresses
within its own address space. Finally, restricting the
set of user accessible DIPs prevents a user handler from
monopolizing the network input. If an illegal DIP is
used, a fault will occur on the sending thread before the
message is sent.

Throttling: In order to prevent a processor from in-
jecting messages at a rate higher than they can be con-
sumed, the M-Machine implements a return-to-sender
throttling protocol. A portion of a local node's memory

(a) Message Send

LOAD
SEND

A[0], MCI
Raddr, Rdip, #1

load A[0] into message composition register 1
send a remote store message to the processor
containing VA Raddr, with a 1 word body

(b) Message Receive
loop: JHP Rnet

; start of remote write code
HOVE Rnet, Rl
STORE Rnet, Rl
BRANCH loop

jump to DIP (remote write) when message arrives

move virtual address into Rl
store the body word of the message into memory
branch back to message dispatch code

Figure 7: Example of M-Machine code implementing a remote store: (a) Sending a 3 word remote store message.

(b) Receiving and performing the store.

42 bits

Extent

Virtual Page Starting
Node

Page-group
Length

Pages/
Node Z Y X

16 bits 6 bits 6 bits 3 bits each

Figure 8: Format of a Global Destination Table (and GTLB) entry, used to determine a physical node identifier

from a virtual address.

is used for returned message buffering. When a mes-
sage is sent, a counter is automatically decremented,
which reserves buffer space for that message, should it
be returned. If the counter is zero, no buffer space
is available and no additional messages may be sent;
threads attempting to execute a SEND instruction will
stall. When the message reaches the destination a re-
ply is sent indicating whether the destination was able
to handle the message. If the message was consumed,
the reply instructs the source processor to increment
its counter, deallocating the buffer space. Otherwise,
the reply contains the contents of the original message
which are copied into the buffer and resent at a later
time.

Discussion: The M-Machine provides direct register-
to-register communication, avoiding the overhead of
memory copying at both the sender and the receiver,
and eliminating the dedicated memory for message ar-
rival, as is found on the J-Machine [6]. Register-mapped
network interfaces have been used previously in the J-
Machine and iWarp [2], and have been described by
*T [20] as well as Henry and Joerg [11]. However, none
of these systems provide protection for user-level mes-
sages.

Systems, like the J-Machine, that provide user ac-

cess to the network interface without atomicity must
temporarily disable interrupts to allow the sending pro-
cess to complete the message. The M-Machine's atomic
SEND instruction eliminates this requirement at the cost
of limiting message length to the number of cluster reg-
isters. Most messages fit easily in this size and larger
messages can be packetized and reassembled with very
low overhead.

Automatic translation of virtual processor numbers
to physical processor identifiers is used in the Cray
T3D [5]. The use of virtual addresses as message desti-
nations in the M-Machine has two advantages. When
combined with translation hardware, it provides protec-
tion for user initiated messages, without incurring the
overhead of operating system invocation, as messages
may not be sent to processors mapped outside of the
user's virtual address space. It also facilitates the im-
plementation of global shared memory. The interleav-
ing performed by the GTLB, although not as versatile
as the CRAY T3D address centrifuge or the interleaving
of the RP3 [21], provides a means of distributing ranges
of the address space across a region of nodes.

In contrast to both *T and FLASH [14] which use a
separate communication coprocessor for receiving mes-
sages, the M-Machine incorporates that function on its
already existing execution resources, an H-Thread in

the event V-Thread. This avoids idling resources as-
sociated with a dedicated processor. During periods of
few messages, user threads may make full use of the
cluster's arithmetic and memory bandwidth.

4.2 Non-Cached Shared Memory

Fast access to remote memory is provided transparently
to the user with a combination of hardware and software
mechanisms. When a load or store operation causes a
Local Translation Lookaside Buffer (LTLB) miss, a soft-
ware trap is signalled. Like the hardware dedicated to
message arrival, one H-Thread in the event V-Thread
is reserved for handling LTLB misses. The LTLB miss
handler code probes the GTLB to determine where the
requested data is located, and if necessary, sends a mes-
sage to the destination node. If the data is in fact local,
the LTLB miss handler fetches the required page table
entry and places it in the LTLB. Using a small portion
of the execution resources for fast trap handling reduces
the latency of both local LTLB misses and remote data
access.

The sequence of operations required to satisfy a re-
mote memory load is shown below. The labels HW and
SW indicate whether the action is performed by hard-
ware or software.

1. HW: Memory operation accesses the cache and
misses (2 cycles).

2. HW: LTLB miss occurs, enqueueing an event (2
cycles).

3. SW: Software accesses the local page table (LPT),
probes the GTLB, and composes and sends a
message containing the referenced and return ad-
dresses (48 cycles).

4. HW: Message delivered to remote node (5 cycles).

5. SW: Message handler fetches requested data from
memory, formats a reply message, and sends it (29
cycles).

6. HW: Return message delivered (5 cycles).

7. SW: Message handler decodes the original load
destination register and writes the data directly
there (41 cycles).

Timelines for both remote read and write accesses
are shown in Figure 9. These measurements are esti-
mates based on prototype message and event handlers
running on the M-Machine simulator. A user level pro-
gram running on node 0 makes read and write requests
to memory on neighboring node 1. Except for the mes-
sage handler that runs on demand, node 1 is idle. All
references to memory system data structures in the soft-
ware handlers are assumed to cache hit.

Table 1 shows a comparison of preliminary results of
local and remote access latencies (in cycles). A read
is completed when the requested data has been writ-
ten into the destination register. A write is completed

Access Times (cycles)
Access Type READ WRITE

Local Cache Hit 3 2
Local Cache Miss 13 19
Local LTLB Miss 61 67

Remote Cache Hit 138 74
Remote Cache Miss 154 90
Remote LTLB Miss 202 138

Table 1: Comparison of local and remote access times,
assuming no resource contention.

when the line containing the data has been fully loaded
into the cache. The remote read and write accesses are
larger than their local counterparts due to the software
intervention required to send the message to the remote
node. However, the time to perform a remote read that
hits in the cache is only a twice as large as a local read
that requires software intervention (LTLB miss). For
the remote write, which does not require return data,
the difference is only 10%.

4.3 Caching and Coherence

Even though remote accesses are fast, their latency is
still large compared to local memory references. This
overhead reduces the ability of the MAP to use the net-
work and remote memory bandwidth effectively. To
reduce overall latency and improve bandwidth utiliza-
tion, each M-Machine node may use its local memory
to cache data from remote nodes.

In addition to the virtual to physical mapping, each
LTLB (and LPT) entry contains 2 status bits for each
cache block in the page. These block status bits are used
to provide fine grained control over 8 word blocks, al-
lowing different blocks within the same mapped page
to be in different states. This fine grained control over
data is similar to that provided in hardware based cache
coherent multiprocessors, and alleviates the false shar-
ing that exists in other software data coherence sys-
tems [16]. The two block status bits are used to encode
the following four states:

• INVALID: The block may not be read, written, or
placed in the hardware cache.

• READ-ONLY: The block may be read, but not writ-
ten.

• READ/WRITE: The block may be read or written.

• DIRTY: The block may be read or written, and it
has been written since being copied to the local
node.

One software policy that uses the block status bits
fetches remote cache blocks on demand. When a mem-
ory reference occurs, the block status bits corresponding

10

REMOTE READ

NODEO NODE 1

' • Start LTLB miss handler

' • Start LPT lookup

2U
 ■ • Probe GTLB

4U ■ • Format message

— . . Send LOAD message -^
 ^>* Message received

bU ♦ LTLB miss handler ,
— completes ' ' **«="" load

- ■ Format reply message |

BU ^——-• -Send reply message

— * Reply Message -^—-^ ♦ Message handler
received completes

UU
■ • Decode LOAD destination

ÜU

• • Return data to
4U destination register

BU,
' Tim

(cycl

3

as)

REMOTE WRrTE
NODE 0 NODE 1

0 < > Start LTLB miss handier

■ •Start LPT lookup

! 20
 • • Probe GTLB

! 40 < •Format message

— , . Sand STORE message
^^ ^ ♦ Message received

; 60

i

♦ LTLB miss handler
— completes ..Execute store

; 80

i 100,

—
completes

' Time
(cycles)

Figure 9: Timeline for remote read and write accesses.

to the global virtual address are checked in hardware. If
the attempted operation is not allowed by the state of
the block, a software trap called a block status fault oc-
curs. The trap code runs in the event V-Thread, in the
H-Thread that is reserved for handling block status and
synchronization events. The block status handler sends
a message to the home node, which can be determined
using the GTLB, requesting the cache block containing
the data. The home node logs the requesting node in a
software managed directory and sends the block back.
When the block is received, the data is written to mem-
ory and the block status bits are marked valid. If the
virtual page containing the block is not mapped to a
local physical page, a new page table entry is created
and only the newly arrived block is marked valid. The
remote data may be loaded into the on-chip cache, and
modifications to the data will automatically mark the
block state dirty. More complex coherence schemes can
map blocks from different virtual pages into the same
physical page, reducing the amount of unmapped phys-
ical memory.

The software handlers used to transmit data from
node to node may implement a variety of coherence
policies and protocols. This code is easily incorporated
within the remote read and write handlers described in
Section 4.2. Using local memory as a repository will
allow remote data to be cached locally beyond the ca-
pacity of the local on-chip cache alone.

Discussion: Directory-based, cache coherent multi-
processors such as Alewife [1] and DASH [15] implement
coherence policies in hardware. This improves perfor-

mance at the cost of flexibility. Like the M-Machine,
FLASH [14] implements remote memory access and
cache coherence in software, but uses a coprocessor.
However, this system does not provide block status bits
in the TLB to support caching remote data in DRAM.
The subpage status bits of the KSR-1 [7] perform a
function similar to that of the block status bits of the
M-Machine.

Implementing a remote memory access and coher-
ence completely in software on a conventional processor
would involve delays much greater than those shown in
Table 1 as evidenced by experience with the Ivy system
[16]. The M-Machine!s fast exception handling in a ded-
icated H-Thread avoids the delay associated with con-
text switching and allows the user thread to execute in
parallel with the exception handler. The GTLB avoids
the overhead of manual translation and the cost of a sys-
tem call to access the network. Finally, the M-Machine
provides memory-mapped addressing of thread registers
to allow the operation to be completed in software.

The major contributors to remote access latency in
the M-Machine are the search for the faulting address
in the local page table and decoding the reply message
(about 40 cycles each). The page-table overhead is only
incurred when accessing the first block of a page. Access
to subsequent blocks cause block-status faults (rather
than page faults) which skip the page-table access. The
reply decode could be accelerated by prohibiting the
faulting V-Thread from swapping out during the mem-
ory operation. However, this would complicate schedul-
ing and remote handling of potentially long latency syn-

11

chronizing memory operations.

5 Conclusion
In this paper we have described the architecture of the
M-Machine with an emphasis on its novel features. The
M-Machine is a 3-D mesh, each node of which contains
a multi-ALU processor (MAP) and 8 MBytes of syn-
chronous DRAM. Each MAP chip consists of four 64-bit
3-issue clusters connected by a cluster switch, a 4-way
interleaved on-chip cache, an external memory interface,
and on-chip network interfaces and routers.

Instruction level parallelism is exploited both within
a cluster and across clusters using H-Threads. An
H-Thread may communicate and synchronize through
registers with H-Threads on different clusters but
within the same V-Thread. A 27 point stencil com-
putation on 4 H-Threads (12-wide issue) has a static
instruction length half that of 1 H-Thread (3-wide is-
sue).

To increase use of the local memory and execution
bandwidth, multiple tasks, called V-Threads, are inter-
leaved on a cycle-by-cycle basis independently on each
of the clusters. Each cycle, a different thread may be
selected for execution, or if only one V-Thread is res-
ident, it may issue an instruction every cycle on each
cluster.

The M-Machine has a user-level, protected, fast mes-
sage passing substrate to reduce communication and re-
mote memory latencies. Messages are composed in gen-
eral registers and sent via a user level SEHD instruction.
Arriving messages are extracted by a system-level soft-
ware message dispatch handler, which is always resident
in the event V-Thread. The message contents are ac-
cessed via a register mapped queue. The message need
not be copied to or from memory on either the sending
or receiving side. Two level translation is used to inde-
pendently relocate objects in the physical address space
on a node, and in the processor namespace.

The fast message system is used to provide the user
with transparent access to remote memory. When a
user's load or store instruction traps to software on a
LTLB miss, a message is sent to a remote node to per-
form the access. While slower than local accesses, a re-
mote load can be satisfied in 138 cycles, while a remote
store can be satisfied in 74 cycles. In order to facili-
tate local caching of remote data, 2 status bits for each
block (8 words) in a page are added to the LTLB and
page table entries. When an invalid block is accessed, a
trap to software occurs which can retrieve the missing
block from a remote node, copy it into local memory,
and mark the status bits valid.

A cycle-accurate simulator of the M-Machine has
been completed and is being used for software develop-
ment. M-Machine software is being designed and imple-
mented jointly with the Scalable Concurrent Program-
ming group at Caltech. The Multiflow compiler [17] is

being ported to the M-Machine to generate long instruc-
tions spanning multiple clusters. It is currently able to
generate code for a single cluster. A prototype runtime
system consisting of primitive message and event han-
dlers has also been implemented. The hardware design
of the MAP is currently underway; 80% of the modules
have been designed at the RTL level and some layout
has begun. The MAP will be implemented on a single in-
tegrated circuit with a projected area of 17mm x 18mm
in 0.5/zm CMOS with 5 metal layers. Tapeout is ex-
pected in 1996.

The M-Machine addresses the issues of non-uniform
technology scaling and of programmability. By chang-
ing the ratio of processor to memory area, the
M-Machine better balances cost and improves the uti-
lization of the increasingly critical memory bandwidth.
The M-Machine increases the ratio of processor to mem-
ory silicon area to 11% from 0.13% for a typical 1996 sys-
tem. A 32-node (128 clusters) M-Machine with a total
of 256 MBytes of memory requires 50% more area than a
uniprocessor with the same amount of memory but pro-
vides 128 times as much peak performance, a 85:1 im-
provement in peak-performance/area. This increase in
processing resources allows the M-Machine to saturate
the costly DRAM bandwidth even for problems with
good locality and thus runs programs faster allowing a
fixed-size memory system to run more programs per unit
time. The 85:1 improvement in peak-performance/area
makes the increased parallelism of the M-Machine cost
effective even in cases where only a small fraction of its
peak performance is realized.

The M-Machine addresses the problem of paral-
lel software by supporting an incremental approach to
parallelization. Unlike conventional parallel machines,
the M-Machine can efficiently run a sequential pro-
gram that uses all the machine's memory, including
that on remote nodes. A shared address space, high-
performance messaging, and caching remote data in lo-
cal DRAM provide fast access to remote data. The se-
quential program can then be divided into tasks, such
as loop iterations or subroutines, that can be executed
in parallel. The ability to support fine-grain paral-
lelism increases the number of suitable tasks and al-
lows extraction of more parallelism from small prob-
lems. Support for synchronizing memory operations and
global addressing simplifies user-level communication
and synchronization between tasks and reduces over-
head. Caching in DRAM automates much of the data
placement and migration problem. For the cases where
a programmer wants to extract the maximum perfor-
mance, fast, protected, user-level messages may be em-
ployed.

We expect that the architecture concepts demon-
strated in the M-Machine will be useful in machines
ranging from single-node personal computers, through
workstations with tens of nodes, to servers with hun-

12

dreds to thousands of nodes. Memory bandwidth and
capacity are becoming the dominant factor in the cost
and performance of systems of all scales. By chang-
ing the processor/memory ratio, providing methods for
extracting parallelism at all levels, and supporting an
incremental approach to parallelism, the M-Machine's
mechanisms will lead to more cost effective and pro-
grammable machines across the price-performance spec-
trum.

References
[1] Anant Agarwal et al. The MIT Alewife machine: A

large-scale distributed-memory multiprocessor. In Scal-
able Shared Memory Multiprocessors. Kluwer Academic
Publishers, 1991.

[2] Shekhar Borkar et al. Supporting systolic and mem-
ory communication in iWarp. In Proceedings of the
17th International Symposium on Computer Architec-
ture, pages 70-81, May 1990.

[3] Nicholas P. Carter, Stephen W. Redder, and William J.
Dally. Hardware support for fast capability-based ad-
dressing. In Proceedings of the Sixth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS VI), pages
319-327. Association for Computing Machinery Press,
October 1994.

[4] Robert P. Colwell, W. Eric Hall, Chandra S. Joshi,
David B. Papworth, Paul K. Rodman, and James E.
Tomes. Architecture and implementation of a VLIW
supercomputer. In Proceedings of Supercomputing '90,
pages 910-919. IEEE Computer Society Press, Novem-
ber 1990.

[5] Cray Research, Inc., Chippewa Falls, WI. Cray T3D
System Architecture Overview, 1993.

[6] William J. Dally et al. The J-Machine: A fine-grain con-
current computer. In G.X. Ritter, editor, Proceedings
of the IFIP Congress, pages 1147-1153. North-Holland,
August 1989.

[7] Steven J. Frank et al. Multiprocessor digital data pro-
cessing system. United States Patent No. 5,055,999,
October 8, 1991.

[8] Anoop Gupta and Wolf-Dietrich Weber. Exploring the
benefits of multiple hardware contexts in a multipro-
cessor architecture: Preliminary results. In Proceedings
of 16th Annual Symposium on Computer Architecture,
pages 273-280. IEEE, May 1989.

[9] Robert H. Halstead and Tetsuya Fujita. MASA: a mul-
tithreaded processor architecture for parallel symbolic
computing. In 15th Annual Symposium on Computer
Architecture, pages 443-451. IEEE Computer Society,
May 1988.

[10] John L. Hennessy and Norman P. Jouppi. Computer
technology and architecture: An evolving interaction.
Computer, pages 18-29, September 1991.

[11] Dana S. Henry and Christopher F. Joerg. A tightly-
coupled processor-network interface. In Fifth Inter-
national Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS
V), pages 111-122. ACM, October 1992.

[12] William M. Johnson. Superscalar Microprocessor De-
sign. Prentice Hall, Englewood Cliffs, NJ, 1991.

[13] Stephen W. Keckler and William J. Dally. Pro-
cessor coupling: Integrating compile time and run-
time scheduling for parallelism. In Proceedings of the
19th International Symposium on Computer Architec-
ture, pages 202-213, Queensland, Australia, May 1992.
ACM.

[14] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Hein-
lein, Richard Simoni, et al. The Stanford FLASH mul-
tiprocessor. In Proc. 21st International Symposium
on Computer Architecture, pages 302-313. IEEE, April
1994.

[15] Daniel Lenoski, James Laudon, Truman Joe, David
Nakahira, Luis Stevens, Anoop Gupta, and John Hen-
nessy. The DASH prototype: Implementation and per-
formance. In Proceedings of 19th Annual International
Symposium on Computer Architecture, pages 92-103.
IEEE, 1992.

[16] Kai Li. Ivy: A shared virtual memory system for paral-
lel computing. In International Conference on Parallel
Processing, pages 94-101, 1988.

[17] P. G. Lowney, S. G. Freudenberger, T. J. Karzes, W. D.
Lichtenstein, R. P. Nix, J. S. O'Donnell, and J. C. Rut-
tenberg. The multiflow trace scheduling compiler. The
Journal of Supercomputing, 7(1-2):51-142, May 1993.

[18] Carver A. Mead and Lynn A. Conway. Introduction to
VLSI Systems. Addison-Wesley, Reading, Mass, 1980.

[19] Michael D. Noakes, Deborah A. Wallach, and
William J. Dally. The J-Machine multicomputer: An
architectural evaluation. In Proceedings of the 20th
International Symposium on Computer Architecture,
pages 224-235, San Diego, California, May 1993. IEEE.

[20] G. M. Papadopoulos, G. A. Boughton, R. Grainer, and
M. J. Beckerle. *T: Integrated building blocks for par-
allel computing. In Proc. Supercomputing 1993, pages
624-635. IEEE, 1993.

[21] G.F. Pfister et al. The IBM research parallel proces-
sor prototype (RP3): Introduction and architecture. In
Proc. International Conference on Parallel Processing,
pages 764-771, 1985.

[22] Burton J. Smith. Architecture and applications of the
HEP multiprocessor computer system. In SPIE Vol.
298 Real-Time Signal Processing IV, pages 241-248.
Denelcor, Inc., Aurora, CO, 1981.

[23] R.M. Tomasulo. An efficient algorithm for exploiting
multiple arithmetic units. IBM Journal, 11:25-33, Jan-
uary 1967.

13

